
Using TDD and BDD to deliver
tested-customer value.

• Michael Collier CSM, CSP, CSD

• Software Developer

• Agile Champion since 2008

• Musician & Entertainer

• Scrum Coach & Developer

About me

@pappymcbeard
#agilepirate
www.musicalblades.com

Our Objectives

• Understand how the customer’s behavior drives acceptance
tests.

• Creating acceptance tests and unit tests from the acceptance
criteria.

• Criteria for writing easy to understand unit tests.

• RED – GREEN – REFACTOR – REPEAT

• What is and is not refactoring.

• Pairing, it really is for everyone.

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Principles behind the Agile Manifesto

 1. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and support they

need,
and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity--the art of maximizing the amount of work not done--is essential.
11. The best architectures, requirements, and designs emerge from self-organizing teams.
12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

Lean Software Development

Agile Development Processes

• Eliminating Waste
• Amplifying Learning
• Deciding as Late as Possible
• Delivering as Fast as Possible
• Empowering the Team
• Building Integrity In
• Seeing the Whole

Extreme Programming (XP)

• simplicity,
• communication
• feedback
• courage

• Planning Game
• Small Releases
• Customer Acceptance Tests
• Simple Design
• Pair Programming
• Test-Driven Development

• Refactoring
• Continuous Integration
• Collective Code Ownership
• Coding Standards
• Metaphor
• Sustainable Pace

Agile Development Processes

Story Map

MVP

Sprint Planned

User Story

Story: Account Holder withdraws cash

As an Account Holder
I want to withdraw cash from an ATM
So that I can get money when the bank is
closed

Ready to start coding!?!

Get the full story

The Elephant

User Stories

A short, simple description of a feature told from the
perspective of the person who desires the new capability,
usually a user or customer of the system.

Michael Cohn

– User stories are focused very much around the user and what they are
trying to achieve.

– A user story does not necessarily focus on why the business is in need
of this new feature

– User stories maybe transient

Acceptance Criteria

• A set of statements, each with a clear pass/fail result

• The stuff that lets you know when a user story is functionally
complete

• Executable

• Specify both functional and system requirements

• Can be ad-hoc and prone to vary in quality

• Often does not say enough to enable the creation of robust
tests

• Constitutes our basic “Definition of Done”

Test Driven Development

• TDD is very good at detailed specification and validation.

• TDD alone can be a costly bottom up approach. You can end
up with hundreds of low level tests.

• It may not provide a test that proves you created a feature
that actually delivers the promised value.

• Not so good at thinking through bigger issues such as how
people will use the system.

• Behavior driven development (BDD) attempts to address all of
these issues and more.

Product Owner Tests

• As the Customer how would you test this story?

• What would you do to validate that we have covered
your expectations for this story?

• Are there scenarios that we might have missed in the
initial discussions?

• Do we have a shared understanding of this story?

Product Owner processes

• How many times have you read a user story or
requirement and not been able to make heads
nor tails of it?

• How many times have you had a conversation
with a customer or product owner and only
found out later that you both had different
versions of what you had “agreed” on?

Process for Writing Unit Tests

“If you can take the idea of defining required behavior for a
simple unit test, then why can't you define required behavior for
acceptance tests?”

‘’Distinct features of an application can be communicated
effectively between all members of the project team, from
product owner through to business analysts through to software
developers through to test engineers.”

 Introduction to behavior driven development

- Dan North

Given, When, Then
Scenario:
What is different from other scenarios for this story

Given
These are any and all assumptions that you’re making in this test. Oftentimes,
this will end up being just instantiating whatever objects will be needed for
the rest of the test joined by And.

When
This is the action that’s going to take place. Most When methods are actually
just one line in length (i.e. make a call to a particular method and store the
result).

Then
This is where the test determines if the result of the Given and When sections
meets what was expected in the test. All of the assertions are done in this
method itself.

Assumptions, initializing
and presets

The behavior or
action you are

testing, only one
per scenario

The expected
results

The difference from
other scenarios

Story: Account Holder withdraws cash
 As an Account Holder
I want to withdraw cash from an ATM
So that I can get money when the bank is closed

Scenario 1: Account has sufficient funds
Given
 the account balance is \$100
 And the card is valid
 And the machine contains enough money
When
 the Account Holder requests \$20
Then
 the ATM should dispense \$20
 And the account balance should be \$80
 And the card should be returned

Scenario 2: Account has insufficient funds
 Given
 the account balance is \$10
 And the card is valid
 And the machine contains enough money
 When
 the Account Holder requests \$20
 Then
 the ATM should not dispense any money
 And the ATM should say there are insufficient funds
 And the account balance should be \$20
 And the card should be returned

 Scenario 3: Card has been disabled
 Given
 the card is disabled
 When
 the Account Holder requests \$20
 Then
 the ATM should retain the card
 And the ATM should say the card has been retained

Unit Tests
• Unit Tests are FIRST

– Fast

– Isolated

–Repeatable

– Self-Verifying

–Timely

 This is not a Unit Test:
 It talks to a database
 It communicates across

a network
 It touches the file

system
 You have to do special

things to your
environment

 These would be
considered integration
tests

 Source: The Art of Agile Development

Unit Test Naming

• Should be expressive.

• Easy to understand.

• Contain what is being tested and expected
results.

• Full sentences work great.

• The team should agree on convention.

Process for Writing Unit Tests

Refactoring
• Refactoring is:

– The process of changing a software system in such a
way that it does not alter the external behavior of the
code yet improves its internal structure.

– A method to make it easier to understand and
cheaper to modify code.

• Refactoring is not:

– Debugging

– Adding features

– Changing observable behavior

– Performance improving

Benefits of Refactoring

• Improved software design

• Reduced code size

• Confusing code is restructured into simpler code

• Code is easier to maintain

Code smells (refactor opportunities)

• @Test(expected = NullPointerException.class) public void
test_null_height_input() { }

• @Test(expected = NullPointerException.class) public void

test_null_weight_input() { }

Given, When, Then
Scenario:
Should add to numbers correctly

Given
 That I have a calculator

When
 I add two numbers

Then
 Then I should get the correct answer.

The Calculator Tests

The Calculator class

User Story

Story: Account Holder orders a checkbook
As an Account Holder
I want to order a checkbook
So that I can write checks

Given, When, Then
Scenario:
 Valid Address

Given
 The account is in credit

 And the user has been authenticated

 And the user's address is available

When

 The user clicks on 'order a Check book‘

Then

 Send check book to user

Given, When, Then
Scenario:
 No address available

Given

 The account number is 12345

 And the user has been authenticated

 And the user's address is UNKNOWN

.When

 The user clicks on 'order a check book'

Then

 Reply NO_ADDRESS to the user's request

Coding the tests

private Customer _cust;

private Account _acct;

private bool _resultOfAddressCheck;

[TestMethod]

public void ShouldReturnTrueIfNoAddressForCustomer()

 {

 Given_That_I_Have_A_Customer();

 Given_That_I_Have_Valid_Account_Number("12345");

 Given_That_I_Have_An_Authenticated_User(1);

 When_Ordering_Checkbook();

 Then_I_Should_Respond_If_Address_Is_Not_Present(true);

 }

 [TestMethod]
 public void Given_That_I_Have_A_Customer()
 {
 throw new NotImplementedException();
 _cust = new Customer();
 }

 [TestMethod]
 public bool Given_That_I_Have_Valid_Account_Number(String accountid)
 {
 throw new NotImplementedException();
 return String.IsNullOrEmpty(accountid);
 _acct = new Account();
 return _acct.IsValidAcountNumber(accountid);
 }

 [TestMethod]
 public bool Given_That_I_Have_An_Authenticated_User(long userid)
 {
 return _cust.IsAuthenticated(userid);
 }

 [TestMethod]
 public void When_Ordering_Checkbook()
 {
 _resultOfAddressCheck = String.IsNullOrEmpty(_cust.Address);
 }

 [TestMethod]
 public void Then_I_Should_Respond_If_Address_Is_Present_Or_Not(bool expectedResult)
 {

 Assert.AreEqual(_resultOfAddressCheck, expectedResult);
 }

Collaborate through Pairing

Build Quality, Fully Tested Product

• Are there zero “bugs” per sprint in the business logic of
completed stories?

• Are all developers confident making changes to the code?

• Do developers have less that one debug session per week that
exceeds 10 minutes?

• Are developers nearly always confident that the code they’ve
written recently does what is intended?

• Is the Product Owner accepting the DONE story each Sprint?

Great User Stories combined with BDD and TDD drives
customer value and satisfaction.

What have we learned

• Understand the product through collaborative shared
understanding.

• Trust and collaboration is essential!

• Ask questions to get great User stories with clear acceptance
criteria.

• Tie all Unit tests back to the acceptance criteria of the user
story

• RED – GREEN – REFACTOR – REPEAT

• Refactoring is not rework.

• Quality code now – or fix technical debt later – you decide

Sources

• The Art of Agile Development
– James Shore

• Cleaner code
– Robert (Uncle Bob) Martin

• Refactoring: Improving the Design of Existing Code
– Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts

• http://ronjeffries.com/

• https://dannorth.net/

http://ronjeffries.com/
http://ronjeffries.com/
https://dannorth.net/
https://dannorth.net/

Questions

